TSUNAMI HAZARD AND RISK ASSESSMENT
(INPUT OF LARGEST M9 CLASS EVENTS)

V.K. Gusiakov
Tsunami Laboratory
Institute of Computational Mathematics and Mathematical Geophysics
Institute of Computational Technologies
Siberian Division, Russian Academy of Sciences, Novosibirsk, Russia

Email: gvk@sscc.ru
Web-site: http://tsun.sscc.ru/tsulab
Novosibirsk Tsunami Laboratory, Institute of Computational Mathematics and Mathematical Geophysics, Siberian Division, Russian Academy of Sciences
My own milestones

40-year anniversary: 1975 July – E. Bernard’s visit to Novosibirsk. Beginning of numerical modeling of tsunami in USA and USSR and joint efforts in bottom tsunami recording

30-year anniversary: 1985 July – my first participation in ITSU-XII, Sidney, BC, Canada

25-year anniversary: 1990 June – the first paleotsunami field trip in Kamchatka
452 tsunamigenic events (20% of the ~2250 total historical tsunamis) occurred in the World ocean during 1965-2015 including 2 trans-oceanic mega-tsunamis – 2004 Indian Ocean and 2011 Tohoku – and 5 tsunami-earthquakes (of 14 known so far).
Numerical modeling and paper-ink plotter visualization of the Nemuro-oki tsunami of June 17, 1973 made on the main-frame BESM-6 computer in TL/ICMMG in 1978
WAPMERR-TL/ICMMG
Pacific-wide modeling and 3D visualization of the Mw8.4 Simushir tsunami of November 15, 2006 in central Kuriles

PTWC global modeling and 3D visualization of the Mw9.0 Tohoku tsunami of March 11, 2011 in the World Ocean
Numerical modeling of tsunami run-up within full 3D Navier-Stokes model (ICM RAS, 2011)
Dependence of tsunami intensity I (on Soloviev-Imamura scale) on M_w magnitude (on the right) of submarine earthquake occurred since 1900 in the World Ocean.
Three groups of largest tsunamis of the World Ocean (compared by different parameters)

<table>
<thead>
<tr>
<th>14 trans-oceanic tsunamis, (H > 5m at D > 5000km)</th>
<th>Top-15 tsunamis with highest run-up, sorted by H_{max}</th>
<th>Top-15 tsunamis with largest fatalities, sorted by N_{FAT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>N - number of run-ups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>365AD Crete N= 5</td>
<td>525m 1958 Lituya Bay</td>
<td>226,898 2004 Sumatra</td>
</tr>
<tr>
<td>1700 Cascadia N= 5</td>
<td>250 m 1963 Vajont Dam</td>
<td>36,417 1883 Krakatau</td>
</tr>
<tr>
<td>1737 Kamchatka N= 5</td>
<td>150m 1936 Lituya Bay</td>
<td>30,000 1707 Nankaido</td>
</tr>
<tr>
<td>1755 Lisbon N=49</td>
<td>120m 1854 Lituya Bay</td>
<td>27,122 1896 Sanriku</td>
</tr>
<tr>
<td>1788 Aleutian N= 3</td>
<td>88m 1788 Aleutians</td>
<td>26,000 1498 Enshunada</td>
</tr>
<tr>
<td>1837 Chile N= 23</td>
<td>85m 1771 Ishigaki Is.</td>
<td>10,497 2011 Tohoku</td>
</tr>
<tr>
<td>1868 Chile N= 115</td>
<td>80m 1674 Indonesia</td>
<td>15,000 1741 Osima</td>
</tr>
<tr>
<td>1946 Aleutians N= 549</td>
<td>70m 1936 Norway</td>
<td>13,486 1771 Ishigaky Is.</td>
</tr>
<tr>
<td>1952 Kamchatka N= 340</td>
<td>68m 1964 Alaska</td>
<td>12,000 1952 Kamchatka</td>
</tr>
<tr>
<td>1957 Aleutians N= 326</td>
<td>63m 1737 Kamchatka</td>
<td>10,000 1755 Lisbon</td>
</tr>
<tr>
<td>1960 Chile N= 1193</td>
<td>62m 1934 Norway</td>
<td>10,000 1765 Guanzhoun</td>
</tr>
<tr>
<td>2004 Sumatra N=1,026</td>
<td>51m 2004 Sumatra</td>
<td>5,000 1605 Nankaido</td>
</tr>
<tr>
<td>2011 Tohoku N=5,570</td>
<td>42m 1946 Aleutians</td>
<td>4,376 1976 Philippines</td>
</tr>
<tr>
<td></td>
<td>40m 2000 Greenland</td>
<td>3,000 1854 Nankaido</td>
</tr>
</tbody>
</table>
Map of historical tsunamigenic events in the World Ocean. Sources of 2250 events occurred from 2000 BC to 2012 are shown. Color represent the tsunami intensity on Soloviev-Imamura scale. Large red circles highlight the M9 class mega-events resulted in trans-oceanic tsunamis.
Historical run-up distribution along the coast of Honshu before 11.03.2011.
Historical run-up distribution along the coast of Honshu after 11.03.2011
Tsunami propagation modeling in the Kuril-Kamchatka region for Mw=7.8, 8.4, 9.0 sources
Parts of Far East coast with predominant input into tsunami hazard from local earthquakes (red color), from far-field sources (blue color), and mixed input (green color)
General formula for calculation of tsunami risk is

\[R = H \times V \times C, \]

where \(R \) – risk, \(H \) – hazard, \(V \) – vulnerability, \(C \) – cost

In this formula, the Expert System can contribute to calculation of \(H \) value, i.e. probability of exceedence of any selected run-up value for a given period of time

Basic steps involved in the tsunami hazard calculation by this approach are:

• Selection of a geographical area
• Retrieval of historical run-ups
• Calculation of the recurrence function
• Calculation of the “hazard curve”
Energy flux for trans-oceanic mega-tsunamis historically known. Insert figure – distribution of fatalities over the tsunami propagation time (up to 85% fatalities occur during the first hour).
Last confirmed tsunami fatalities in Russia were in 1952 (>10,000)

Source map and historical tsunami heights in Kuril-Kamchatka region from 1737 to 2015
Historical tsunami heights in the Kuril-Kamchatka region, 1737-2014 and results of modeling for Mw=9.0. Model sources.
New paradigm in tsunami hazard mitigation in Japan – two-level strategy in tsunami hazard management (Takeuchi, 2013)

Reconstruction principles in Tohoku
(Central Disaster Management Council, 28 Sept 2011)

Two levels Approach

Level 1 Tsunami (Frequent scale: 50-150 years)
Life, properties & livelihood
- Sea walls, dikes, highways:
 - Minami Sanriku-cho, Miyagi Prefecture

Cut mountain hills & develop

Residence/disaster prevention bases

Land elevation 2nd line seawall
Evacuation shelter

Level 2 Tsunami (Maximum scale: 1000 years) Life
- Move to higher lands
- Tall buildings to evacuate
- Landuse (park, factories, farmland; commercial/business, residential areas)

ICHARM
PTHA is actually prediction of the future (seismotectonic process) for some extended period of time (100 – 1000 years)
• “Those who have knowledge do not predict.
• Those who predict do not have knowledge”
 • *Lao Tsu, 4 century BC*

• “If you want to know what will happen, look first at what has already occurred”
 • *Niccolo Machiavelli*
A comparative length and completeness of regional tsunami catalogs in the Pacific. Each vertical line corresponds to a single tsunamigenic event with color representing the tsunami intensity on Soloviev-Imamura scale. Average length is 424 years.
Tsunamigenic sand layers in the cross-section made at the altitude of 20.5 m on the Kamchatskiy Cape (Pinegina, 2014)
Restored (by paleo-geological tracing) run-up heights of the 1737 and 1952 tsunamis along the Paramushir – Kamchatka east coast (Pinegina, 2014)
Important key points

- Trans-oceanic tsunamis resulted from M9 class subduction earthquakes gives the major input in overall tsunami hazard (<1% of events responsible for >50% of all fatalities).

- They produce high (>10m) run-ups over extended portion (~1000km) of coastline and constitute major hazard for the coast of marginal seas.

- With few exceptions (1896 Sanriku, 1946 Aleutians) the magnitude value Mw=9.0 looks like a threshold for generating of trans-oceanic tsunamis.

- Geological methods of paleotsunami tracing is indispensable tool for long-term tsunami hazard assessment and needs to be used in all regions.